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The longitudinal dispersion due to the shear effect of a current is examined 
theoretically in the idealized two-dimensional case. This study reveals the process 
whereby the dispersion reaches a stationary stage after the release of the dispersing 
substance as an instantaneous line source in steady and in oscillatory currents. I n  
addition, the relation between the stationary dispersion coefficients in steady and 
oscillatory currents is given analytically. Analysis of the dispersion during the initial 
stage needs a clear definition of the vertical average of the variance. We can 
understand the problem of the negative dispersion coefficient, which is obtained by 
the usual vertical average, through introduction of a new vertical average. 

1. Introduction 
It has long been known that the ‘shear effect’, which is caused by the combined 

action of flow shear and mixing in the cross-sectional plane, has a strong influence 
on mass transport in pipes, channels, rivers, estuaries and inlets etc. Longitudinal 
dispersion due to tht. shear effect, after the great work of Taylor (1953, 1954), has 
been studied by many workers using theoretical analyses, hydraulic experiments, field 
observations and numerical analyses etc. (Fischer et al. 1979). Understanding the 
detailed nature of the shear effect from observing the actual dispersion of matter is 
difficult, because the shear effect is in reality a three-dimensional phenomenon. Thus 
most work on the shear effect has been concerned with theoretical analyses; although 
there has been a gap betwcen the idealized models that  have been used and the real 
phenomena, because ofthe assumptions made and the constraints imposed. Theoretical 
analyses are considered to be superior in understanding the basic nature of the 
phenomena insofar as there is not too much concern about numerical values. Many 
n orks on dispersion have used larger time periods and neglected periodic variation 
in the oscillatory current. The dispersion process from the initial to the stationary 
stage has scarcely been clarified analytically. Though Smith ( 1982) analysed the 
variance and the dispersion coefficient during the initial stage in the oscillatory 
current, he showed that the dispersion coefficient was sometimes negative. Smith 
(1983) also explained that the increasing rate of the variance (corresponding to the 
dispersion coefficient) a t  a particular level is negative in reversing flows of oscillatory 
currents. The negative dispersion coefficient is not considered to be reasonable if we 
regard the dispersion due to the shear effect as a kind of mixing phenomena such as 
turbulent diffusion. 

Yasuda (1982) examined the dispersion structure due to the oscillatory boundary 
layer, with understanding of the behaviour a t  each level, and pointed out the problem 
of the vertical average of the dispersion coefficient. The present paper will study the 
dispersion process from the initial to the stationary stage in both steady and 
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FIQURE 1 .  Two-dimensional model of dispersion due to shear effect. The dispersing substance is 
released as an instantaneous line source a t  z = 0. 

oscillatory currents with typical vertical profile, in which a new definition of the 
vertical average of the dispersion will be proposed. It will clarify the nature of the 
dispersion due to the shear effect and the problem of the negative dispersion 
coefficient. 

2. Analysis of the advective-diffusion equation in the two-dimensional 
plane 

This study will analyse the longitudinal dispersion due to the shear effect in the 
two-dimensional (x, 2)-plane, neglecting the variation with y (figure 1 ) .  If the current 
u ( z ,  t),  independent of x, flows along the x-axis, the advective-diffusion equation 
governing the concentration of the diffusing substance S(z, z ,  t )  can be written as 

as as a2s a2s 

at ax a x 2  az2 
-+u(z, t )  - = k,-+ k , - ,  

where t is time, and k, and k, are diffusion coefficients (assumed constant). In order 
to make the theoretical considerations easier, the water depth is assumed constant, 
and the diffusing substance is completely passive, as can be seen from (1) .  The 
boundary conditions for S(x,  2, t )  are 

(2) 
- 0 a t  z = 0 (bottom) and z = H (water surface), 

a s  
az 
_ -  

S = O  asx-t+oo.  
The initial condition is 

where So represents the total amount of the diffusing substance and 6(x) is the Dirac 
delta function. The initial condition (3) corresponds to an instantaneous line source 
at x = 0 due to the absence of variation with y-direction. When the current u ( z , t )  
is independent of x ,  Aris’s (1956) method of moments can apply for analysis of the 
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matter dispersion. Knowledge of the various moments of the material concentration 
suggests the behaviour of the concentration distribution. Thepth-order moment of the 
concentration a t  level z and time t is defined as 

rcn 
M,(z, t )  = J zPS(Z, 2, t )  dx, 14) 

-03 

where p can take any positive integer value. The equation governing the pth-order 
moment is given by (1) and (2) as 

with the boundary condition 

(6) 
aM 
- = O  a t z = O a n d z = H .  

Mo(z,  t )  means the amount of the dispersing material at level z ,  and the normalized 
pth-order moment is given by 

a2 

Furthermore the normalized and central pth-order moment can be defined as 

I r m  

The variance at level z is 
t )  = # Z ( Z ,  t )  = p2-p;. 

The skewness factor and the flatness factor are 

(9) 

where 'T, is the standard deviation. The longitudinal dispersion coefficient at level 
z and time t is defined in terms of a i ( z ,  t )  as 

1 dai(z, t )  
2 dt 

D(z , t )  = -_____ 

The dispersion coefficient D(z ,  t ) ,  which indicates the degree of the dispersion effect, 
is obtained from the zeroth-, the first- and the second-order moments. Though the 
skewness factor and the flatness factor, obtained from the third- and the fourth-order 
moments, are regarded as important during the initial stage of matter dispersion, the 
present study does not solve these higher-order moments, since the emphasis is on 
the dispersion coefficient. Equations governing the zeroth-, the first- and the 
second-order moments are written as follows : 
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Boundary conditions for various moments are given in (6). The initial condition for 
the zeroth order moment is M ,  = So/H ( t  = 0 ) ,  and those for the other various 
moments are M p  = 0 ( t  = 0). Let the current u(z, t )  be expressed as 

where Ci and qi are functions of z and t respectively. The meaning of (16) is as follows: 
it is a steady flow if k = 1 and ql = 1 ,  a transient flow if Ic = 1 and q l  = 1 -ePt, and 
an oscillatory flow without phase lag if k = 1 and ql = sin wt(or cos w t ) .  Further- 
more, Yasuda's (1982) analysis corresponds to the case in which k = 2, 
5 1 = 1 - e d z  cospz, = e-Pz sinpz, ql = sin wt and q2 = coswt, where w is frequency 
of the oscillation and /3 is a constant determined by frequency and viscosity. 

The solution of the zeroth-order moment is invariant with time in the case of an 
instantaneous line source. Therefore 

SO Mo(z,  t )  = -.  
H 

Equations (14) and (15) are non-homogeneous heat-conduction equations, as is well 
known. If the right-hand side of each equation is known, we can obtain a formal 
solution (Yasuda 1982). The formal expression for the first-order moment is given 
as 

SO M,(z , t )  = -,ul(z,t) = 
H 

then the second-order moment is expressed as 

where en = (l(n = O) ,  2(n  + 0)) and xn = (nn:)21cZ/H2. The right-hand side of (19) can 
be seen to consist of two independent terms: one due to the horizontal diffusivity 
and the other due to the combined action of flow shear and vertical diffusivity. 
Because the horizontal diffusivity has no effect on the flow shear in this model, we 
neglect the horizontal-diffusion effect and pay attention only to the above combined 
action in the following discussion. Substituting a reasonable functional formula for 
the current profile into (18) and (19), we can obtain the analytical behaviour of the 
dispersion in the steady, oscillatory and the other time-dependent flows. 

3. Vertically averaged solutions of the equations governing the dispersion 
due to the shear effect 

Yasuda (1982) analysed the vertical profile of the variance in the oscillatory current 
forming the oscillatory boundary layer (sometimes called the ' Stokes boundary 
layer '). Principally, this study will take notice of the vertically averaged values, which 
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have been worked on generally by many researchers. There are two methods of 
taking the average of the variance as follows: 

The overbar denotes the vertical average. Equation (20) gives the averaged variance 
in the vertical direction and gives the degree of mixing. On the other hand, (21) is 
obtained from averaging the concentration of the diffusing substance and contains 
the degree of stretching by flow shear besides that of mixing. Though there is little 
difference between both variances when t is large and the dispersing substance is 
well-mixed vertically, i t  is necessary to pay attention to this distinction especially 
during the initial stage. From (20) and (21) we can define the respective vertically 
averaged dispersion coefficients as follows : 

- 1d3: 1 d3:* 
D(t )  = --, D(t)* = ST. 2 dt 

The vertical averages of the first- and second-order moments and so on are 

(24) 
U obtained as 

Pl = j-jaOl(H)Pol(t)> 

r n r  m 1 

where 
rt 

Substitution of (24)-(26) into (20) and (21) yields 

If aml(H), Pml(t), Amnl (H)  and Bmnll(t) can be integrated, the dispersion coefficient 
IS expressed analytically. 

I n  order to analyse the longitudinal dispersion, this study adopts the following two 
kinds of vertical profile of the current (figure 2) : 
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FIGURE 2.  Vertical profiles of the current in this study : (a )  the two-layer flow; 
(6) the linear flow. 

(a )  is a two-layer Aow, and the region of 0 5 z 5 d is called the ‘dead zone of flow’. 
When d = H in ( b ) ,  i t  is a well-known Couette flow having constant shear throughout 
the depth. The value o fd  is arbitrary from 0 to  H in both profiles. The profiles (a )  
and (b)  are respectively called the ‘two-layer flow’ and the ‘linear flow’ in the 
following discussion. The oscillatory current in this study will neglect the effect of 
the phase distribution for simplicity, i.e. L = 1 and rl = xinwt. 

3.1. Analytical solutions in the case of the steady current 

By substituting velocity profiles as mentioned above into (22)-(28), we can represent 
the vertically averaged variance etc. as follows : 

1u1 = UTc[a,t*l, (31 )  

where t* = t/T,, and T, = H 2 / k ,  is called the characteristic time of vertical mixing. 
a, and am are expressed as 

= { 1 -@* for the linear flow ( b ) ,  
(37) 1 -d* for the two-layer flow (a ) ,  
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where d* = d / H .  When t is large as e-n2t* tends to zero, the dispersion coefficient 
becomes steady. The steady dispersion coefficients are written as 

m 

Suffix s denotes the steady state. If higher-order terms of a, are negligibly small, 
the vertically averaged dispersion coefficients are approximated as 

D = U2T, [$z, { 1 - e-n2t* 1 1, 
D* = UZT, [ia., ( 1  - e-n2t*}1. 

D, = D,* = aU2T,a1. 

(40) 

(41) 

(42) 

The steady coefficie.nts in this condition are expressed as 
_ -  

Substitution of d* = 1 into (38)  yields a, = 1/60.0868 ... in the case of a linear flow. 
This almost completely corresponds to Bowden's (1965) analysis, where D, = &VT, 
in the case of a linear flow with constant shear in all depth.? 

3.2. Analytical solutions in the case of a n  oscillatory current 
The vertically averaged variance etc. in the case of an oscillatory current with k = 1 
and rl = sin wt are expressed analytically as follows : 

P l  = UT,[ao TO(t*)l, (43)  

where 
1 - cos 2nq  t* 

2 n q  ' 
T,(t*) = 

+ 2nTr cos 2nT, t *}] - cos 4 n ~ ,  t* +=sin 4nq t*} , 
2nTr 

-4nTr(mn)2e-(mn)zt* sin 2nT,t*+i ( ( ( m 7 ~ ) ~ -  ( ~ X T , ) ~ }  cos4nq t*  

+4nnT, (rn~)~  s in4nqt*) - i ] -a  1 - c o s 4 n q t * + 0 2  2nTr s i n h q t * } ,  i 
t The characteristic velocity U,, is the vertical averaged value in Bowden's (1965) analysis. 

Though Ds = &uZb T, was given in his work, it corresponds to Ds = &uZT, in the present paper. 



a,, and a, are the same as those in the steady current. Though the dispersion 
coefficients (47) and (48) are seemingly complicated, we can express them in a 
simplified form at large values of time as e-lZt* tends t o  zero. 

2(2nT,)Z } cos4nT,t*)] (49) 
+:(mn)2{ 1 - (m7q4 + (2nZy 

m 
D;, = U 2 c  Z +,Em(?) [$(mn)z-(nT, s in4nT, t*+$(m~)~ cos4nT,t*)]. (50) 

m=l 

The argument 2nT,t* of each trigonometrical function corresponds to wt (w is the 
frequency of the oscillatory current). Thus i t  is recognized from (47)-(50) that, though 
the dispersion coefficient has cyclical variations with the same frequency as the 
oscillatory current during the initial stage, it fluctuates with only a double frequency 
a t  large t .  The dispersion coefficient in the oscillatory current changes cyclically with 
a double-frequency period infinitely, though that in the steady current reaches a 
steady and constant value as time proceeds. I n  order to understand the long-term 
variation, we often disregard the variation with the frequency of the oscillatory 
current. The vertically averaged variances a t  every tidal period, which is given by 
substituting cos 2nT, t* = cos 4nT, t* = 1 and sin 2nT, t* = sin 4nT, t* = 0, are written 
as follows : 

The tidally averaged dispersion coefficients a t  each tidal period are given by the 
difference between the above variance a t  the (Z+l)th tidal period and that a t  the 
lth one: 
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FIGURE 3. Stationary dispersion coefficients in the steady current for each d*.  

x exp [ -? 11 { 1 -exp [ -?]}], (54) 

where 1 is any positive integer. The steady values a t  large 1 are 

If T, is very small the dispersion coefficient in the oscillatory current is half of that  
in the steady current, as shown by Bowden (1965). 

4. Solution curves of the vertically averaged dispersion 
From the analysis in $3  we can recognize that the stationary dispersion coefficient 

in the steady current of (39) is the most basic one. Figure 3 illustrates i t  with each 
d* (from zero to unity) in both typical current profiles. The dispersion coefficient has 
a maximum a t  d* = 0.5 in the case of the two-layer flow, as is to  be expected. Though 
it is considered to have a maximum a t  d* = 1 in the case of the linear flow, 
unexpectedly i t  reaches a maximum a t  d* = 0.72. 

The dispersion coefficient in the oscillatory current is recognized to depend on the 
value of T,( = T,/T)  from (55). This is shown in figure 4 for the case of each flow profile. 
The case d* = 1 in the linear flow corresponds to Couette flow, and the curve for this 
case is identical with that of Holly, Harleman & Fischer (1970). This figure shows 
that the rate of decrease of the dispersion coefficient to 7; varies for each flow profile. 

Figure 5 represents the variation of the vertically averaged variance with time in 
the steady flow with d* = 0.5 of the two-layer flow. Figure 6 shows the variation of 
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FIGURE 4. Variations with T,( = T,/T) of one-cycle-averaged dispersion coefficients at the stationary 
state for a few typical velocity profiles. The dispersion coefficients of the ordinate are normalized 
by those for very small T,. 

the vertically averaged dispersion coefficient with time. The dispersion coefficient can 
be seen to reach steady state when the time approaches nearly a half of the 
characteristic time T, of vertical mixing. This figure indicates that  n* is larger than 
D during the transient state until steady. Such processes of the variation of the 
dispersion coefficient with time are almost similar to  one another, even if the current 
profiles are different. Figure 7 shows the variation of the variance with time in the 
oscillatory current (yl = sin ot), the vertical profile of which is identical with that of 
figure 5.  Figure 8 shows the dispersion coefficient corresponding to figure 7 .  The 
equation yl = sinwt means that a line source is released a t  the slack period, which 
is shown by a thick solid line. A thin solid line in these figures illustrates the case 
of 7;11 = eos wt ,  which means that a line source is released a t  the maximum flow period. 
Figures 7 and 8 are for the case T, = 10. The dispersion coefficient reaches the 
stationary state in both the steady current and the oscillatory one when e--n2t* tends 
to zero. Therefore the stationary state approximates to the period oft* 2 0.5. Though 
approaching a constant value in the steady current as time proceeds, the dispersion 
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FIGURE 5 .  Temporal changes of the vertically averaged variances in the steady current with two-layer 
profile (d* = 0.5) as given by (33) and (34), which correspond respectively to a solid line and a broken 
line. 
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FIGURE 6. The dispersion coefficients with the same current as in the case of figure 5 given by 
(35) (solid line) and (36) (broken line). 
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FIQURE 7. The variations of the vertical averaged variance with time in the oscillatory current with 
two-layer profile (d* = 0.5). The thick solid and broken lines correspond t o  (45) and (46) respectively. 
The thin solid line is for v1 = coswt, which means that a line source is released a t  the maximum 
flow period. (T, = 10.) 

coefficient changes cyclically in the oscillatory current even in the stationary state, 
as is expected from the results of $3. The dispersion coefficient D*, obtained by the 
averaging method of previous researchers, is sometimes negative. This results from 
increase and decrease of the shear of the first-order moment, and the detailed 
structure will be illustrated in $5. The dispersion coefficient D, proposed in the present 
study and representing the degree of mixture of the substance, is by no means 
negative, even when i t  is very small. Figures 9 and 10 show variances and dispersion 
coefficients when T,  = 100 with the same current profile as figures 7 and 8. When T,  
is large, which results from small k,, the two types of vertically averaged dispersion 
coefficient are very different from one another. Figures 11 and 12 show variances and 
dispersion coefficients for the case T,  = 10 with d* = 1 of the linear flow. Figure 13 
is the variation with each tidal period of the dispersion coefficient in the case d* = 0.5 
of the two-layer-flow. The vertically averaged dispersion coefficient without cyclical 
change can be seen to reach the steady value more rapidly than the period that e-n2t* 
becomes nearly zero, especially when T,  is large. 

5. Vertical structure of shear diffusion 
Though the dispersion coefficient is generally evaluated through the vertical (or 

cross-sectional) average, the study of the variation of its vertical profile with time 
is considered to help us to understand better the nature of the dispersion due to the 
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FIQURE 10. The dispersion coefficients with the same condition as figure 9. 
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FIQURE 11. The variances in the oscillatory current with linear profile (d* = 1 and T, = 10). 
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I L 

( T ,  = 10) x 10 4UZT, 
( h )  

FIGURE 16. The variations of the vertical profile of the variance with time (d* = 0.5 of the two-layer 
flow): (a )  the steady current; (b )  the oscillatory current for T, = 10. 

shear effect. This section will show a few examples of the vertical structure of the 
dispersion. 

The vertical structures of the variance and the dispersion coefficient etc. can be 
found by substitution of (18) and (19) into (9) and (12) etc. I n  figure 14 is shown 
the temporal change of the vertical profile of the first-order moment during the initial 
stage. Figures 14 ( a )  and ( b )  are the cases of the steady and the oscillatory currents 
respectively. The current profile is d* = 0.5 for two-layer flow and T, = 10 in the case 
of the oscillatory current. Figure 15 shows during the stationary stage (t* = 0.9- 1). 
The time interval of each profile in both figures is &Tc. In  the oscillatory current 
one tidal period corresponds to &Tc, where T,  = 10. We can see from figure 15 that 
the dispersion coefficient can have a variation with double frequency in the oscillatory 
current, since the vertical profiles of the first-order moment for the flood period is 
completely symmetric with those for the ebb period. Figure 16 illustrates the 
temporal change of the vertical profile of the variance with the same current condition 
as that of figure 14. This figure explains that the dispersion is a t  first generated a t  
the level z* = d* (where a difference in velocity appears, or in other words the flow 
shear is maximum) and gradually transmitted in the vertical direction. Figure 17 
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/ / z * = o  

t*( = t/TJ 

x 10-3 
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t * ( =  t /TJ 

-1 I (b) 

FIGURE 17. Temporal changes of the dispersion coefficient a t  z* = d* and a t  z* = 0 or 1 (d* = 0.5 
of the two-layer flow) : (a )  the steady current; ( b )  the oscillatory current for T, = 10. 

shows the variations of the dispersion coefficient with time at z* = 0.5 (where the 
velocity gap appears) and z* = 0 or 1 (bottom or water surface). Note that the 
dispersion coefficient a t  level z can be rewritten from (14), (15) and (12) as t  

Although the dispersion coefficients a t  two typical levels reach the same constant 
value with time in the steady current, they fluctuate separately in the oscillatory 
current, even a t  large time. 

t Since p2 and ,u1 are formally expressed as ZF-,, F,(t) cos (nn /H)  z in this study, differentiation 
is easier with respect to z than t .  
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FIGURE 18. Temporal changes of the dispersion coefficient at z* = d* and z* = 0 or 1 in the 
oscillatory current with two-layer flow (d* = 0.5): (a )  T, = 100; ( h )  1 ;  (c) 0.1. 
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6. On the negative dispersion coefficient in the oscillatory current 
That the vertically averaged dispersion coefficient can be sometimes negative in 

the oscillatory current was explained in $53 and 4; this is due to the usual definition 
of the vertical average. Smith (1983) showed that the increasing rate of the variance 
(corresponding to the dispersion coefficient) a t  a particular level can be negative in 
reversing flows of oscillatory currents. Figure 17 ( b )  in the present paper supports the 
above only during the first tidal period (0 5 t* 5 0.1). This figure illustrates that  the 
negative dispersion coefficient appears not only in reversing flows but twice for one 
tidal period a t  large t .  Figure 18 shows the variations of the dispersion coefficients 
a t  two particular levels with time in the cases T,  = 100, T, = 1 and T,  = 0.1. If T,  is 
very small, it is difficult to detect the negative dispersion coefficient, as was stated 
by Smith (1983). The negative is by no means for mixing to proceed reversely, i.e. 
reduction of entropy. It is because the diffusing substance dispersed strongly a t  a 
particular level and a certain period is diffused vertically at the following period, 
which can be seen from figure 1 6 ( b ) .  The vertically integrated dispersion coefficient 
(corresponding to D i n  this study if divided by depth); in other words, the dispersion 
in the two-dimensional (x, z )  plane does not become negative, as stated in $4. 

7. Concluding remarks 
Yasuda (1982) analysed the longitudinal dispersion in an oscillatory current 

forming a boundary layer given analytically, and studied how the longitudinal 
dispersion is generated by the shear effect ofthe oscillatory current. Since i t  was the 
primary aim to understand the elementary nature of the longitudinal dispersion in 
such a current, general characteristics of i t  could not be sufficiently shown in that 
paper. The present paper has developed the previous analytical method to deal with 
longitudinal dispersion due to the shear effect, making a comparison between that 
in the steady current and that in the oscillatory current. The time-dependence of the 
vertically averaged dispersion coefficient has been elucidated analytically in both the 
steady and oscillatory currents, regardless of the vertical profile of the current. The 
dispersion during the initial stage or its variation within one oscillatory period, which 
has strong vertical shear of the first-order moment, has required a new definition of 
the variance and the dispersion coefficient. If we regard the dispersion as a mixing 
process like turbulent diffusion, the newly defined D i n  this study is considered to 
be more significant than the usual D* in understanding the dispersion. is by no 
means negative, even when D* or the dispersion coefficient a t  a particular level is 
negative. 

The work reported in this paper was carried out as a part of the research conducted 
a t  the Government Research Institute, Chugoku, and funded through the 
Environmental Protection Agency of the Japanese Government. 
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